0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(0))) → s(0)
fib(s(s(x))) → sp(g(x))
g(0) → pair(s(0), 0)
g(s(0)) → pair(s(0), s(0))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +(x, y)
np(pair(x, y)) → pair(+(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
FIB(s(s(x))) → SP(g(x))
FIB(s(s(x))) → G(x)
G(s(x)) → NP(g(x))
G(s(x)) → G(x)
SP(pair(x, y)) → +1(x, y)
NP(pair(x, y)) → +1(x, y)
+1(x, s(y)) → +1(x, y)
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(0))) → s(0)
fib(s(s(x))) → sp(g(x))
g(0) → pair(s(0), 0)
g(s(0)) → pair(s(0), s(0))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +(x, y)
np(pair(x, y)) → pair(+(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+1(x, s(y)) → +1(x, y)
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(0))) → s(0)
fib(s(s(x))) → sp(g(x))
g(0) → pair(s(0), 0)
g(s(0)) → pair(s(0), s(0))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +(x, y)
np(pair(x, y)) → pair(+(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
G(s(x)) → G(x)
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(0))) → s(0)
fib(s(s(x))) → sp(g(x))
g(0) → pair(s(0), 0)
g(s(0)) → pair(s(0), s(0))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +(x, y)
np(pair(x, y)) → pair(+(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none