(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIB(s(s(x))) → +1(fib(s(x)), fib(x))
FIB(s(s(x))) → FIB(s(x))
FIB(s(s(x))) → FIB(x)
+1(x, s(y)) → +1(x, y)

The TRS R consists of the following rules:

fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(x, s(y)) → +1(x, y)

The TRS R consists of the following rules:

fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(x, s(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(+1(x1, x2)) = x2   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIB(s(s(x))) → FIB(x)
FIB(s(s(x))) → FIB(s(x))

The TRS R consists of the following rules:

fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FIB(s(s(x))) → FIB(x)
FIB(s(s(x))) → FIB(s(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(FIB(x1)) = x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE