(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(s(x)) → SUM(x)
SUM1(s(x)) → SUM1(x)

The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM1(s(x)) → SUM1(x)

The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM1(s(x)) → SUM1(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SUM1(x0, x1)  =  SUM1(x0)

Tags:
SUM1 has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
SUM1(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(s(x)) → SUM(x)

The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(s(x)) → SUM(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SUM(x0, x1)  =  SUM(x0)

Tags:
SUM has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
SUM(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE