(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → G(x, s(x))
G(s(x), y) → G(x, +(y, s(x)))
G(s(x), y) → +1(y, s(x))
+1(x, s(y)) → +1(x, y)
G(s(x), y) → G(x, s(+(y, x)))
G(s(x), y) → +1(y, x)
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(x, s(y)) → +1(x, y)
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
+1(x, s(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(
x0,
x1,
x2) =
+1(
x0,
x2)
Tags:
+1 has argument tags [3,2,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(+1(x1, x2)) = 0
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(s(x), y) → G(x, s(+(y, x)))
G(s(x), y) → G(x, +(y, s(x)))
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(s(x), y) → G(x, s(+(y, x)))
G(s(x), y) → G(x, +(y, s(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(
x0,
x1,
x2) =
G(
x1)
Tags:
G has argument tags [0,0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(+(x1, x2)) = 1 + x2
POL(0) = 0
POL(G(x1, x2)) = 0
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE