(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), y) → +1(x, y)
+1(p(x), y) → +1(x, y)
MINUS(s(x)) → MINUS(x)
MINUS(p(x)) → MINUS(x)
*1(s(x), y) → +1(*(x, y), y)
*1(s(x), y) → *1(x, y)
*1(p(x), y) → +1(*(x, y), minus(y))
*1(p(x), y) → *1(x, y)
*1(p(x), y) → MINUS(y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(p(x)) → MINUS(x)
MINUS(s(x)) → MINUS(x)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(p(x)) → MINUS(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS(x0, x1)  =  MINUS(x1)

Tags:
MINUS has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MINUS(x1)  =  MINUS
p(x1)  =  p(x1)
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MINUS: []
p1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x)) → MINUS(x)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x)) → MINUS(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS(x0, x1)  =  MINUS(x1)

Tags:
MINUS has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MINUS(x1)  =  MINUS
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MINUS: []
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(p(x), y) → +1(x, y)
+1(s(x), y) → +1(x, y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(p(x), y) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x0, x1, x2)  =  +1(x1)

Tags:
+1 has argument tags [0,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
+1(x1, x2)  =  x2
p(x1)  =  p(x1)
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
p1: [1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), y) → +1(x, y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(s(x), y) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x0, x1, x2)  =  +1(x1)

Tags:
+1 has argument tags [3,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
+1(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(p(x), y) → *1(x, y)
*1(s(x), y) → *1(x, y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(p(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
*1(x0, x1, x2)  =  *1(x1)

Tags:
*1 has argument tags [0,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
*1(x1, x2)  =  x2
p(x1)  =  p(x1)
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
p1: [1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(s(x), y) → *1(x, y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(s(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
*1(x0, x1, x2)  =  *1(x1)

Tags:
*1 has argument tags [3,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
*1(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE