(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(s(x), y) → +1(x, y)
-1(s(x), s(y)) → -1(x, y)
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
-1(s(x), s(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
-1(
x0,
x1,
x2) =
-1(
x0,
x1,
x2)
Tags:
-1 has argument tags [2,1,1] and root tag 0
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
-1(
x1,
x2) =
-1
s(
x1) =
s(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
Status:
-^1: []
s1: multiset
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(s(x), y) → +1(x, y)
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
+1(s(x), y) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(
x0,
x1,
x2) =
+1(
x1)
Tags:
+1 has argument tags [1,2,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
+1(
x1,
x2) =
+1
s(
x1) =
s(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
Status:
+^1: multiset
s1: [1]
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE