0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 PisEmptyProof (⇔)
↳10 TRUE
minus(0) → 0
+(x, 0) → x
+(0, y) → y
+(minus(1), 1) → 0
minus(minus(x)) → x
+(x, minus(y)) → minus(+(minus(x), y))
+(x, +(y, z)) → +(+(x, y), z)
+(minus(+(x, 1)), 1) → minus(x)
+1(x, minus(y)) → MINUS(+(minus(x), y))
+1(x, minus(y)) → +1(minus(x), y)
+1(x, minus(y)) → MINUS(x)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
+1(minus(+(x, 1)), 1) → MINUS(x)
minus(0) → 0
+(x, 0) → x
+(0, y) → y
+(minus(1), 1) → 0
minus(minus(x)) → x
+(x, minus(y)) → minus(+(minus(x), y))
+(x, +(y, z)) → +(+(x, y), z)
+(minus(+(x, 1)), 1) → minus(x)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, minus(y)) → +1(minus(x), y)
+1(x, +(y, z)) → +1(x, y)
minus(0) → 0
+(x, 0) → x
+(0, y) → y
+(minus(1), 1) → 0
minus(minus(x)) → x
+(x, minus(y)) → minus(+(minus(x), y))
+(x, +(y, z)) → +(+(x, y), z)
+(minus(+(x, 1)), 1) → minus(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(x, minus(y)) → +1(minus(x), y)
POL(+(x1, x2)) = x1 + x2
POL(+1(x1, x2)) = x2
POL(0) = 1
POL(1) = 0
POL(minus(x1)) = 1 + x1
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
minus(0) → 0
+(x, 0) → x
+(0, y) → y
+(minus(1), 1) → 0
minus(minus(x)) → x
+(x, minus(y)) → minus(+(minus(x), y))
+(x, +(y, z)) → +(+(x, y), z)
+(minus(+(x, 1)), 1) → minus(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
POL(+(x1, x2)) = 1 + x1 + x2
POL(+1(x1, x2)) = 0
POL(0) = 1
POL(1) = 1
POL(minus(x1)) = 0
minus(0) → 0
+(x, 0) → x
+(0, y) → y
+(minus(1), 1) → 0
minus(minus(x)) → x
+(x, minus(y)) → minus(+(minus(x), y))
+(x, +(y, z)) → +(+(x, y), z)
+(minus(+(x, 1)), 1) → minus(x)