(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(a, b) → +1(b, a)
+1(a, +(b, z)) → +1(b, +(a, z))
+1(a, +(b, z)) → +1(a, z)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
F(+(x, y), z) → +1(f(x, z), f(y, z))
F(+(x, y), z) → F(x, z)
F(+(x, y), z) → F(y, z)

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(a, +(b, z)) → +1(a, z)

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(a, +(b, z)) → +1(a, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x0, x1, x2)  =  +1(x0, x1)

Tags:
+1 has argument tags [0,3,2] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
+1(x1, x2)  =  +1(x2)
a  =  a
+(x1, x2)  =  +(x1, x2)
b  =  b

Lexicographic path order with status [LPO].
Quasi-Precedence:
a > [+^11, +2, b]

Status:
+^11: [1]
a: []
+2: [1,2]
b: []


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x0, x1, x2)  =  +1(x0, x1, x2)

Tags:
+1 has argument tags [0,1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
[+^12, +2, a, b]

Status:
+^12: [1,2]
+2: [1,2]
a: []
b: []


The following usable rules [FROCOS05] were oriented:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(+(x, y), z) → F(y, z)
F(+(x, y), z) → F(x, z)

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(+(x, y), z) → F(y, z)
F(+(x, y), z) → F(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2)  =  F(x0, x1, x2)

Tags:
F has argument tags [2,0,3] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1, x2)  =  x1
+(x1, x2)  =  +(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
+2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE