(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
+1(*(x, y), +(x, z)) → +1(y, z)
+1(*(x, y), +(*(x, z), u)) → +1(*(x, +(y, z)), u)
+1(*(x, y), +(*(x, z), u)) → +1(y, z)

The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(*(x, y), +(x, z)) → +1(y, z)
+1(*(x, y), +(*(x, z), u)) → +1(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x1, x2)  =  +1(x1)

Tags:
+1 has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(*(x1, x2)) = 1 + x2   
POL(+(x1, x2)) = x1   

The following usable rules [FROCOS05] were oriented:

+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)
+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
+1(*(x, y), +(*(x, z), u)) → +1(*(x, +(y, z)), u)

The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(*(x, y), +(*(x, z), u)) → +1(*(x, +(y, z)), u)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x1, x2)  =  +1(x2)

Tags:
+1 has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(*(x1, x2)) = 1 + x1   
POL(+(x1, x2)) = x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)

The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x1, x2)  =  +1(x2)

Tags:
+1 has tags [1,0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(*(x1, x2)) = 1 + x2   
POL(+(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE