(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(+(x, 0)) → F(x)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)

The TRS R consists of the following rules:

f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)

The TRS R consists of the following rules:

f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(x, +(y, z)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x0, x1, x2)  =  +1(x2)

Tags:
+1 has argument tags [1,2,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(+(x1, x2)) = 1 + x1 + x2   
POL(+1(x1, x2)) = 0   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(+(x, 0)) → F(x)

The TRS R consists of the following rules:

f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(+(x, 0)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x1)

Tags:
F has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(+(x1, x2)) = 1 + x1   
POL(0) = 0   
POL(F(x1)) = 1   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE