(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(h(x)) → MINUS(x)
MINUS(f(x, y)) → MINUS(y)
MINUS(f(x, y)) → MINUS(x)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(h(x)) → MINUS(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS(x0, x1)  =  MINUS(x0, x1)

Tags:
MINUS has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MINUS(x1)) = 0   
POL(f(x1, x2)) = x1 + x2   
POL(h(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(f(x, y)) → MINUS(y)
MINUS(f(x, y)) → MINUS(x)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(f(x, y)) → MINUS(y)
MINUS(f(x, y)) → MINUS(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS(x0, x1)  =  MINUS(x1)

Tags:
MINUS has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MINUS(x1)) = 0   
POL(f(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE