(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(h(x)) → MINUS(x)
MINUS(f(x, y)) → MINUS(y)
MINUS(f(x, y)) → MINUS(x)
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MINUS(h(x)) → MINUS(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS(
x1) =
MINUS(
x1)
Tags:
MINUS has tags [0]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(f(x1, x2)) = x1 + x2
POL(h(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(f(x, y)) → MINUS(y)
MINUS(f(x, y)) → MINUS(x)
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MINUS(f(x, y)) → MINUS(y)
MINUS(f(x, y)) → MINUS(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS(
x1) =
MINUS(
x1)
Tags:
MINUS has tags [0]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(f(x1, x2)) = 1 + x1 + x2
The following usable rules [FROCOS05] were oriented:
none
(6) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(8) TRUE