(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

I(+(x, y)) → +1(i(x), i(y))
I(+(x, y)) → I(x)
I(+(x, y)) → I(y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)

The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)

The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
+(x1, x2)  =  +(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • +1(x, +(y, z)) → +1(x, y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

  • +1(x, +(y, z)) → +1(+(x, y), z) (allowed arguments on rhs = {2})
    The graph contains the following edges 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

I(+(x, y)) → I(y)
I(+(x, y)) → I(x)

The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
+(x1, x2)  =  +(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • I(+(x, y)) → I(y) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • I(+(x, y)) → I(x) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(10) TRUE