(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(c(X, s(Y))) → f(c(s(X), Y))
g(c(s(X), Y)) → f(c(X, s(Y)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(X, s(Y))) → F(c(s(X), Y))
G(c(s(X), Y)) → F(c(X, s(Y)))

The TRS R consists of the following rules:

f(c(X, s(Y))) → f(c(s(X), Y))
g(c(s(X), Y)) → f(c(X, s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(X, s(Y))) → F(c(s(X), Y))

The TRS R consists of the following rules:

f(c(X, s(Y))) → f(c(s(X), Y))
g(c(s(X), Y)) → f(c(X, s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
s(x1)  =  s(x1)
c(x1, x2)  =  x2

From the DPs we obtained the following set of size-change graphs:

  • F(c(X, s(Y))) → F(c(s(X), Y)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(6) TRUE