0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 QDP
↳15 QDPSizeChangeProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPSizeChangeProof (⇔)
↳19 TRUE
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
EQ(s(X), s(Y)) → EQ(X, Y)
LE(s(X), s(Y)) → LE(X, Y)
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
MIN(cons(N, cons(M, L))) → LE(N, M)
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
REPLACE(N, M, cons(K, L)) → EQ(N, K)
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
SELSORT(cons(N, L)) → EQ(N, min(cons(N, L)))
SELSORT(cons(N, L)) → MIN(cons(N, L))
IFSELSORT(true, cons(N, L)) → SELSORT(L)
IFSELSORT(false, cons(N, L)) → MIN(cons(N, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
IFSELSORT(false, cons(N, L)) → REPLACE(min(cons(N, L)), N, L)
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
LE(s(X), s(Y)) → LE(X, Y)
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
Order:Homeomorphic Embedding Order
AFS:
true = true
false = false
cons(x1, x2) = cons(x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
EQ(s(X), s(Y)) → EQ(X, Y)
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
Order:Homeomorphic Embedding Order
AFS:
false = false
cons(x1, x2) = cons(x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
IFSELSORT(true, cons(N, L)) → SELSORT(L)
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
Order:Combined order from the following AFS and order.
replace(x1, x2, x3) = x3
nil = nil
cons(x1, x2) = cons(x2)
ifrepl(x1, x2, x3, x4) = x4
eq(x1, x2) = eq(x2)
min(x1) = min
ifmin(x1, x2) = ifmin(x1, x2)
le(x1, x2) = le(x1, x2)
s(x1) = s
true = true
false = false
0 = 0
Homeomorphic Embedding Order
AFS:
replace(x1, x2, x3) = x3
nil = nil
cons(x1, x2) = cons(x2)
ifrepl(x1, x2, x3, x4) = x4
eq(x1, x2) = eq(x2)
min(x1) = min
ifmin(x1, x2) = ifmin(x1, x2)
le(x1, x2) = le(x1, x2)
s(x1) = s
true = true
false = false
0 = 0
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))