(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(X), s(Y)) → EQ(X, Y)
LE(s(X), s(Y)) → LE(X, Y)
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
MIN(cons(N, cons(M, L))) → LE(N, M)
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
REPLACE(N, M, cons(K, L)) → EQ(N, K)
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
SELSORT(cons(N, L)) → EQ(N, min(cons(N, L)))
SELSORT(cons(N, L)) → MIN(cons(N, L))
IFSELSORT(true, cons(N, L)) → SELSORT(L)
IFSELSORT(false, cons(N, L)) → MIN(cons(N, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
IFSELSORT(false, cons(N, L)) → REPLACE(min(cons(N, L)), N, L)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 6 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(X), s(Y)) → LE(X, Y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(X), s(Y)) → LE(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
LE(x0, x1, x2)  =  LE(x0, x1, x2)

Tags:
LE has argument tags [2,1,1] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
LE(x1, x2)  =  LE
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
LE: []
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MIN(x0, x1)  =  MIN(x1)
IFMIN(x0, x1, x2)  =  IFMIN(x0, x2)

Tags:
MIN has argument tags [0,4] and root tag 0
IFMIN has argument tags [2,3,4] and root tag 1

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MIN(x1)  =  MIN
cons(x1, x2)  =  cons(x1, x2)
IFMIN(x1, x2)  =  IFMIN(x2)
le(x1, x2)  =  le(x2)
true  =  true
false  =  false
0  =  0
s(x1)  =  s

Recursive path order with status [RPO].
Quasi-Precedence:
MIN > [cons2, le1] > IFMIN1
MIN > [cons2, le1] > [false, 0] > true

Status:
MIN: []
cons2: [2,1]
IFMIN1: multiset
le1: multiset
true: multiset
false: multiset
0: multiset
s: []


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(X), s(Y)) → EQ(X, Y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(s(X), s(Y)) → EQ(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
EQ(x0, x1, x2)  =  EQ(x0, x1, x2)

Tags:
EQ has argument tags [2,1,1] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
EQ: []
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
REPLACE(x0, x1, x2, x3)  =  REPLACE(x0, x1, x3)
IFREPL(x0, x1, x2, x3, x4)  =  IFREPL(x0, x1, x2, x3)

Tags:
REPLACE has argument tags [1,0,0,7] and root tag 1
IFREPL has argument tags [0,14,0,1,9] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
REPLACE(x1, x2, x3)  =  x2
cons(x1, x2)  =  cons(x1, x2)
IFREPL(x1, x2, x3, x4)  =  x4
eq(x1, x2)  =  eq
false  =  false
0  =  0
true  =  true
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[cons2, eq, false] > [0, true]

Status:
cons2: multiset
eq: multiset
false: multiset
0: multiset
true: multiset


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IFSELSORT(true, cons(N, L)) → SELSORT(L)
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IFSELSORT(true, cons(N, L)) → SELSORT(L)
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
IFSELSORT(x0, x1, x2)  =  IFSELSORT(x0, x1, x2)
SELSORT(x0, x1)  =  SELSORT(x1)

Tags:
IFSELSORT has argument tags [1,7,6] and root tag 0
SELSORT has argument tags [7,6] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
IFSELSORT(x1, x2)  =  IFSELSORT(x1)
true  =  true
cons(x1, x2)  =  cons(x2)
SELSORT(x1)  =  SELSORT(x1)
eq(x1, x2)  =  eq
min(x1)  =  min
false  =  false
replace(x1, x2, x3)  =  x3
0  =  0
nil  =  nil
s(x1)  =  s(x1)
ifmin(x1, x2)  =  ifmin
le(x1, x2)  =  le(x1, x2)
ifrepl(x1, x2, x3, x4)  =  x4

Recursive path order with status [RPO].
Quasi-Precedence:
SELSORT1 > [min, ifmin] > [IFSELSORT1, cons1] > [true, eq, false, 0, nil]
s1 > [true, eq, false, 0, nil]
le2 > [true, eq, false, 0, nil]

Status:
IFSELSORT1: [1]
true: multiset
cons1: [1]
SELSORT1: multiset
eq: multiset
min: multiset
false: multiset
0: multiset
nil: multiset
s1: [1]
ifmin: []
le2: [1,2]


The following usable rules [FROCOS05] were oriented:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE