(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

and(false, false) → false
and(true, false) → false
and(false, true) → false
and(true, true) → true
eq(nil, nil) → true
eq(cons(T, L), nil) → false
eq(nil, cons(T, L)) → false
eq(cons(T, L), cons(Tp, Lp)) → and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) → eq(L, Lp)
eq(var(L), apply(T, S)) → false
eq(var(L), lambda(X, T)) → false
eq(apply(T, S), var(L)) → false
eq(apply(T, S), apply(Tp, Sp)) → and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) → false
eq(lambda(X, T), var(L)) → false
eq(lambda(X, T), apply(Tp, Sp)) → false
eq(lambda(X, T), lambda(Xp, Tp)) → and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)
ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(cons(T, L), cons(Tp, Lp)) → AND(eq(T, Tp), eq(L, Lp))
EQ(cons(T, L), cons(Tp, Lp)) → EQ(T, Tp)
EQ(cons(T, L), cons(Tp, Lp)) → EQ(L, Lp)
EQ(var(L), var(Lp)) → EQ(L, Lp)
EQ(apply(T, S), apply(Tp, Sp)) → AND(eq(T, Tp), eq(S, Sp))
EQ(apply(T, S), apply(Tp, Sp)) → EQ(T, Tp)
EQ(apply(T, S), apply(Tp, Sp)) → EQ(S, Sp)
EQ(lambda(X, T), lambda(Xp, Tp)) → AND(eq(T, Tp), eq(X, Xp))
EQ(lambda(X, T), lambda(Xp, Tp)) → EQ(T, Tp)
EQ(lambda(X, T), lambda(Xp, Tp)) → EQ(X, Xp)
REN(var(L), var(K), var(Lp)) → IF(eq(L, Lp), var(K), var(Lp))
REN(var(L), var(K), var(Lp)) → EQ(L, Lp)
REN(X, Y, apply(T, S)) → REN(X, Y, T)
REN(X, Y, apply(T, S)) → REN(X, Y, S)
REN(X, Y, lambda(Z, T)) → REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))
REN(X, Y, lambda(Z, T)) → REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)

The TRS R consists of the following rules:

and(false, false) → false
and(true, false) → false
and(false, true) → false
and(true, true) → true
eq(nil, nil) → true
eq(cons(T, L), nil) → false
eq(nil, cons(T, L)) → false
eq(cons(T, L), cons(Tp, Lp)) → and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) → eq(L, Lp)
eq(var(L), apply(T, S)) → false
eq(var(L), lambda(X, T)) → false
eq(apply(T, S), var(L)) → false
eq(apply(T, S), apply(Tp, Sp)) → and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) → false
eq(lambda(X, T), var(L)) → false
eq(lambda(X, T), apply(Tp, Sp)) → false
eq(lambda(X, T), lambda(Xp, Tp)) → and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)
ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(cons(T, L), cons(Tp, Lp)) → EQ(L, Lp)
EQ(cons(T, L), cons(Tp, Lp)) → EQ(T, Tp)
EQ(var(L), var(Lp)) → EQ(L, Lp)
EQ(apply(T, S), apply(Tp, Sp)) → EQ(T, Tp)
EQ(apply(T, S), apply(Tp, Sp)) → EQ(S, Sp)
EQ(lambda(X, T), lambda(Xp, Tp)) → EQ(T, Tp)
EQ(lambda(X, T), lambda(Xp, Tp)) → EQ(X, Xp)

The TRS R consists of the following rules:

and(false, false) → false
and(true, false) → false
and(false, true) → false
and(true, true) → true
eq(nil, nil) → true
eq(cons(T, L), nil) → false
eq(nil, cons(T, L)) → false
eq(cons(T, L), cons(Tp, Lp)) → and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) → eq(L, Lp)
eq(var(L), apply(T, S)) → false
eq(var(L), lambda(X, T)) → false
eq(apply(T, S), var(L)) → false
eq(apply(T, S), apply(Tp, Sp)) → and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) → false
eq(lambda(X, T), var(L)) → false
eq(lambda(X, T), apply(Tp, Sp)) → false
eq(lambda(X, T), lambda(Xp, Tp)) → and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)
ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(cons(T, L), cons(Tp, Lp)) → EQ(L, Lp)
EQ(cons(T, L), cons(Tp, Lp)) → EQ(T, Tp)
EQ(var(L), var(Lp)) → EQ(L, Lp)
EQ(apply(T, S), apply(Tp, Sp)) → EQ(T, Tp)
EQ(apply(T, S), apply(Tp, Sp)) → EQ(S, Sp)
EQ(lambda(X, T), lambda(Xp, Tp)) → EQ(T, Tp)
EQ(lambda(X, T), lambda(Xp, Tp)) → EQ(X, Xp)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(EQ(x1, x2)) = x2   
POL(apply(x1, x2)) = 1 + x1 + x2   
POL(cons(x1, x2)) = 1 + x1 + x2   
POL(lambda(x1, x2)) = 1 + x1 + x2   
POL(var(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

and(false, false) → false
and(true, false) → false
and(false, true) → false
and(true, true) → true
eq(nil, nil) → true
eq(cons(T, L), nil) → false
eq(nil, cons(T, L)) → false
eq(cons(T, L), cons(Tp, Lp)) → and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) → eq(L, Lp)
eq(var(L), apply(T, S)) → false
eq(var(L), lambda(X, T)) → false
eq(apply(T, S), var(L)) → false
eq(apply(T, S), apply(Tp, Sp)) → and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) → false
eq(lambda(X, T), var(L)) → false
eq(lambda(X, T), apply(Tp, Sp)) → false
eq(lambda(X, T), lambda(Xp, Tp)) → and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)
ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REN(X, Y, apply(T, S)) → REN(X, Y, S)
REN(X, Y, apply(T, S)) → REN(X, Y, T)
REN(X, Y, lambda(Z, T)) → REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))
REN(X, Y, lambda(Z, T)) → REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)

The TRS R consists of the following rules:

and(false, false) → false
and(true, false) → false
and(false, true) → false
and(true, true) → true
eq(nil, nil) → true
eq(cons(T, L), nil) → false
eq(nil, cons(T, L)) → false
eq(cons(T, L), cons(Tp, Lp)) → and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) → eq(L, Lp)
eq(var(L), apply(T, S)) → false
eq(var(L), lambda(X, T)) → false
eq(apply(T, S), var(L)) → false
eq(apply(T, S), apply(Tp, Sp)) → and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) → false
eq(lambda(X, T), var(L)) → false
eq(lambda(X, T), apply(Tp, Sp)) → false
eq(lambda(X, T), lambda(Xp, Tp)) → and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)
ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


REN(X, Y, lambda(Z, T)) → REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))
REN(X, Y, lambda(Z, T)) → REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(REN(x1, x2, x3)) = x2 + x3   
POL(and(x1, x2)) = 0   
POL(apply(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 0   
POL(eq(x1, x2)) = 0   
POL(false) = 0   
POL(if(x1, x2, x3)) = 0   
POL(lambda(x1, x2)) = 1 + x2   
POL(nil) = 0   
POL(ren(x1, x2, x3)) = x3   
POL(true) = 0   
POL(var(x1)) = 0   

The following usable rules [FROCOS05] were oriented:

ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REN(X, Y, apply(T, S)) → REN(X, Y, S)
REN(X, Y, apply(T, S)) → REN(X, Y, T)

The TRS R consists of the following rules:

and(false, false) → false
and(true, false) → false
and(false, true) → false
and(true, true) → true
eq(nil, nil) → true
eq(cons(T, L), nil) → false
eq(nil, cons(T, L)) → false
eq(cons(T, L), cons(Tp, Lp)) → and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) → eq(L, Lp)
eq(var(L), apply(T, S)) → false
eq(var(L), lambda(X, T)) → false
eq(apply(T, S), var(L)) → false
eq(apply(T, S), apply(Tp, Sp)) → and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) → false
eq(lambda(X, T), var(L)) → false
eq(lambda(X, T), apply(Tp, Sp)) → false
eq(lambda(X, T), lambda(Xp, Tp)) → and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)
ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


REN(X, Y, apply(T, S)) → REN(X, Y, S)
REN(X, Y, apply(T, S)) → REN(X, Y, T)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(REN(x1, x2, x3)) = x3   
POL(apply(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

and(false, false) → false
and(true, false) → false
and(false, true) → false
and(true, true) → true
eq(nil, nil) → true
eq(cons(T, L), nil) → false
eq(nil, cons(T, L)) → false
eq(cons(T, L), cons(Tp, Lp)) → and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) → eq(L, Lp)
eq(var(L), apply(T, S)) → false
eq(var(L), lambda(X, T)) → false
eq(apply(T, S), var(L)) → false
eq(apply(T, S), apply(Tp, Sp)) → and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) → false
eq(lambda(X, T), var(L)) → false
eq(lambda(X, T), apply(Tp, Sp)) → false
eq(lambda(X, T), lambda(Xp, Tp)) → and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) → var(K)
if(false, var(K), var(L)) → var(L)
ren(var(L), var(K), var(Lp)) → if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) → apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) → lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE