(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MIN(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
QUOT(s(X), s(Y)) → MIN(X, Y)
LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))
LOG(s(s(X))) → QUOT(X, s(s(0)))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MIN(s(X), s(Y)) → MIN(X, Y)

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • MIN(s(X), s(Y)) → MIN(X, Y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
min(x1, x2)  =  x1
0  =  0
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:

trivial

Status:
0: []
s1: [1]

AFS:
min(x1, x2)  =  x1
0  =  0
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05].


min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)

(10) TRUE

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
quot(x1, x2)  =  x1
s(x1)  =  s(x1)
min(x1, x2)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:

trivial

Status:
s1: [1]
0: []

AFS:
quot(x1, x2)  =  x1
s(x1)  =  s(x1)
min(x1, x2)  =  x1
0  =  0

From the DPs we obtained the following set of size-change graphs:

  • LOG(s(s(X))) → LOG(s(quot(X, s(s(0))))) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05].


quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
quot(0, s(Y)) → 0
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)

(13) TRUE