(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
div(X, e) → i(X)
i(div(X, Y)) → div(Y, X)
div(div(X, Y), Z) → div(Y, div(i(X), Z))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(X, e) → I(X)
I(div(X, Y)) → DIV(Y, X)
DIV(div(X, Y), Z) → DIV(Y, div(i(X), Z))
DIV(div(X, Y), Z) → DIV(i(X), Z)
DIV(div(X, Y), Z) → I(X)
The TRS R consists of the following rules:
div(X, e) → i(X)
i(div(X, Y)) → div(Y, X)
div(div(X, Y), Z) → div(Y, div(i(X), Z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
DIV(X, e) → I(X)
I(div(X, Y)) → DIV(Y, X)
DIV(div(X, Y), Z) → DIV(Y, div(i(X), Z))
DIV(div(X, Y), Z) → DIV(i(X), Z)
DIV(div(X, Y), Z) → I(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
DIV(
x1,
x2) =
DIV(
x1)
I(
x1) =
I(
x1)
Tags:
DIV has tags [3,3]
I has tags [0]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(div(x1, x2)) = 1 + x1 + x2
POL(e) = 1
POL(i(x1)) = x1
The following usable rules [FROCOS05] were oriented:
i(div(X, Y)) → div(Y, X)
div(X, e) → i(X)
div(div(X, Y), Z) → div(Y, div(i(X), Z))
(4) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
div(X, e) → i(X)
i(div(X, Y)) → div(Y, X)
div(div(X, Y), Z) → div(Y, div(i(X), Z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(6) TRUE