(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(s(X), X) → f(X, a(X))
f(X, c(X)) → f(s(X), X)
f(X, X) → c(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(X), X) → F(X, a(X))
F(X, c(X)) → F(s(X), X)

The TRS R consists of the following rules:

f(s(X), X) → f(X, a(X))
f(X, c(X)) → f(s(X), X)
f(X, X) → c(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(X), X) → F(X, a(X))

The TRS R consists of the following rules:

f(s(X), X) → f(X, a(X))
f(X, c(X)) → f(s(X), X)
f(X, X) → c(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(X), X) → F(X, a(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2)  =  F(x1)

Tags:
F has argument tags [0,2,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1, x2)  =  x2
s(x1)  =  s(x1)
a(x1)  =  a(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
s1: multiset
a1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(s(X), X) → f(X, a(X))
f(X, c(X)) → f(s(X), X)
f(X, X) → c(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X, c(X)) → F(s(X), X)

The TRS R consists of the following rules:

f(s(X), X) → f(X, a(X))
f(X, c(X)) → f(s(X), X)
f(X, X) → c(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(X, c(X)) → F(s(X), X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2)  =  F(x0)

Tags:
F has argument tags [0,0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1, x2)  =  x2
c(x1)  =  c(x1)
s(x1)  =  s

Recursive path order with status [RPO].
Quasi-Precedence:
[c1, s]

Status:
c1: [1]
s: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(s(X), X) → f(X, a(X))
f(X, c(X)) → f(s(X), X)
f(X, X) → c(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE