(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(a) → f(c(a))
f(c(X)) → X
f(c(a)) → f(d(b))
f(a) → f(d(a))
f(d(X)) → X
f(c(b)) → f(d(a))
e(g(X)) → e(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a) → F(c(a))
F(c(a)) → F(d(b))
F(a) → F(d(a))
F(c(b)) → F(d(a))
E(g(X)) → E(X)

The TRS R consists of the following rules:

f(a) → f(c(a))
f(c(X)) → X
f(c(a)) → f(d(b))
f(a) → f(d(a))
f(d(X)) → X
f(c(b)) → f(d(a))
e(g(X)) → e(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

E(g(X)) → E(X)

The TRS R consists of the following rules:

f(a) → f(c(a))
f(c(X)) → X
f(c(a)) → f(d(b))
f(a) → f(d(a))
f(d(X)) → X
f(c(b)) → f(d(a))
e(g(X)) → e(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


E(g(X)) → E(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
E(x0, x1)  =  E(x0)

Tags:
E has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
E(x1)  =  x1
g(x1)  =  g(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
g1: [1]


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(a) → f(c(a))
f(c(X)) → X
f(c(a)) → f(d(b))
f(a) → f(d(a))
f(d(X)) → X
f(c(b)) → f(d(a))
e(g(X)) → e(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE