(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), s(Y)) → P(minus(X, Y))
MINUS(s(X), s(Y)) → MINUS(X, Y)
DIV(s(X), s(Y)) → DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • MINUS(s(X), s(Y)) → MINUS(X, Y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV(s(X), s(Y)) → DIV(minus(X, Y), s(Y))

The TRS R consists of the following rules:

minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
minus(x1, x2)  =  x1
0  =  0
s(x1)  =  s(x1)
p(x1)  =  p(x1)

Recursive path order with status [RPO].
Quasi-Precedence:

[s1, p1]

Status:
0: multiset
s1: multiset
p1: multiset

AFS:
minus(x1, x2)  =  x1
0  =  0
s(x1)  =  s(x1)
p(x1)  =  p(x1)

From the DPs we obtained the following set of size-change graphs:

  • DIV(s(X), s(Y)) → DIV(minus(X, Y), s(Y)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05].


minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X

(10) TRUE