(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LT(s(X), s(Y)) → LT(X, Y)
APPEND(add(N, X), Y) → APPEND(X, Y)
SPLIT(N, add(M, Y)) → F_1(split(N, Y), N, M, Y)
SPLIT(N, add(M, Y)) → SPLIT(N, Y)
F_1(pair(X, Z), N, M, Y) → F_2(lt(N, M), N, M, Y, X, Z)
F_1(pair(X, Z), N, M, Y) → LT(N, M)
QSORT(add(N, X)) → F_3(split(N, X), N, X)
QSORT(add(N, X)) → SPLIT(N, X)
F_3(pair(Y, Z), N, X) → APPEND(qsort(Y), add(X, qsort(Z)))
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND(add(N, X), Y) → APPEND(X, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APPEND(add(N, X), Y) → APPEND(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APPEND(x1, x2)  =  APPEND(x1)

Tags:
APPEND has tags [1,0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
add2: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LT(s(X), s(Y)) → LT(X, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LT(s(X), s(Y)) → LT(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
LT(x1, x2)  =  LT(x2)

Tags:
LT has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLIT(N, add(M, Y)) → SPLIT(N, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLIT(N, add(M, Y)) → SPLIT(N, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SPLIT(x1, x2)  =  SPLIT(x2)

Tags:
SPLIT has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
add2: multiset


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QSORT(add(N, X)) → F_3(split(N, X), N, X)
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QSORT(add(N, X)) → F_3(split(N, X), N, X)
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
QSORT(x1)  =  QSORT(x1)
F_3(x1, x2, x3)  =  F_3(x1, x2, x3)

Tags:
QSORT has tags [2]
F_3 has tags [1,3,3]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
add(x1, x2)  =  add(x1, x2)
split(x1, x2)  =  split(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
f_1(x1, x2, x3, x4)  =  f_1(x1, x3, x4)
f_2(x1, x2, x3, x4, x5, x6)  =  f_2(x1, x3, x4, x5, x6)
lt(x1, x2)  =  lt
0  =  0
s(x1)  =  x1
true  =  true
false  =  false

Recursive path order with status [RPO].
Quasi-Precedence:
[add2, split1, nil, f13, f25] > [pair2, lt, 0, false] > true

Status:
add2: multiset
split1: multiset
pair2: multiset
nil: multiset
f13: multiset
f25: multiset
lt: multiset
0: multiset
true: multiset
false: multiset


The following usable rules [FROCOS05] were oriented:

split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE