(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(plus(X, Y), Z) → PLUS(X, plus(Y, Z))
PLUS(plus(X, Y), Z) → PLUS(Y, Z)
TIMES(X, s(Y)) → PLUS(X, times(Y, X))
TIMES(X, s(Y)) → TIMES(Y, X)

The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(plus(X, Y), Z) → PLUS(Y, Z)
PLUS(plus(X, Y), Z) → PLUS(X, plus(Y, Z))

The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
plus(x1, x2)  =  plus(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • PLUS(plus(X, Y), Z) → PLUS(Y, Z) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

  • PLUS(plus(X, Y), Z) → PLUS(X, plus(Y, Z)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(X, s(Y)) → TIMES(Y, X)

The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • TIMES(X, s(Y)) → TIMES(Y, X) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 > 1, 1 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(10) TRUE