0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
↳15 QDP
↳16 QDPOrderProof (⇔)
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 PisEmptyProof (⇔)
↳21 TRUE
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
MINUS(s(x), s(y)) → MINUS(x, y)
LE(s(x), s(y)) → LE(x, y)
PERFECTP(s(x)) → F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
F(s(x), 0, z, u) → MINUS(z, s(x))
F(s(x), s(y), z, u) → IF(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
F(s(x), s(y), z, u) → LE(x, y)
F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
F(s(x), s(y), z, u) → MINUS(y, x)
F(s(x), s(y), z, u) → F(x, u, z, u)
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
LE(s(x), s(y)) → LE(x, y)
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(x), s(y)) → LE(x, y)
POL(LE(x1, x2)) = 1
POL(s(x1)) = 1 + x1
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
MINUS(s(x), s(y)) → MINUS(x, y)
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x), s(y)) → MINUS(x, y)
POL(MINUS(x1, x2)) = 1
POL(s(x1)) = 1 + x1
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) → F(x, u, z, u)
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) → F(x, u, z, u)
POL(0) = 0
POL(F(x1, x2, x3, x4)) = 1 + x3
POL(minus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = 1 + x1
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
POL(0) = 0
POL(F(x1, x2, x3, x4)) = 1 + x1 + x4
POL(minus(x1, x2)) = x1
POL(s(x1)) = 1 + x1
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))