(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, empty) → G(a, empty)
F(a, cons(x, k)) → F(cons(x, a), k)
G(cons(x, k), d) → G(k, cons(x, d))

The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(cons(x, k), d) → G(k, cons(x, d))

The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(cons(x, k), d) → G(k, cons(x, d))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(G(x1, x2)) = x1   
POL(cons(x1, x2)) = 1 + x2   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, cons(x, k)) → F(cons(x, a), k)

The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(a, cons(x, k)) → F(cons(x, a), k)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(F(x1, x2)) = x2   
POL(cons(x1, x2)) = 1 + x2   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE