(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(m, n, s(r)) → P(m, r, n)
P(m, s(n), 0) → P(0, n, m)

The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
0  =  0
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • P(m, n, s(r)) → P(m, r, n) (allowed arguments on rhs = {1, 2, 3})
    The graph contains the following edges 1 >= 1, 3 > 2, 2 >= 3

  • P(m, s(n), 0) → P(0, n, m) (allowed arguments on rhs = {1, 2, 3})
    The graph contains the following edges 3 >= 1, 2 > 2, 1 >= 3

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(4) TRUE