(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(m, n, s(r)) → P(m, r, n)
P(m, s(n), 0) → P(0, n, m)

The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(m, n, s(r)) → P(m, r, n)
P(m, s(n), 0) → P(0, n, m)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
P(x0, x1, x2, x3)  =  P(x0, x2, x3)

Tags:
P has argument tags [0,0,2,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(P(x1, x2, x3)) = x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(6) TRUE