(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))

The TRS R consists of the following rules:

f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
cons(x1, x2)  =  cons(x2)

From the DPs we obtained the following set of size-change graphs:

  • G(a, b, c) → F(a, cons(b, c)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1

  • F(cons(x, k), l) → G(k, l, cons(x, k)) (allowed arguments on rhs = {1, 2, 3})
    The graph contains the following edges 1 > 1, 2 >= 2, 1 >= 3

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(4) TRUE