0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
↳15 QDP
↳16 QDPOrderProof (⇔)
↳17 QDP
↳18 PisEmptyProof (⇔)
↳19 TRUE
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
-1(s(x), s(y)) → -1(x, y)
LT(s(x), s(y)) → LT(x, y)
DIV(s(x), s(y)) → IF(lt(x, y), 0, s(div(-(x, y), s(y))))
DIV(s(x), s(y)) → LT(x, y)
DIV(s(x), s(y)) → DIV(-(x, y), s(y))
DIV(s(x), s(y)) → -1(x, y)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
LT(s(x), s(y)) → LT(x, y)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LT(s(x), s(y)) → LT(x, y)
[LT2, s1]
LT2: [1,2]
s1: [1]
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
-1(s(x), s(y)) → -1(x, y)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-1(s(x), s(y)) → -1(x, y)
[-^12, s1]
-^12: [1,2]
s1: [1]
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
DIV(s(x), s(y)) → DIV(-(x, y), s(y))
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV(s(x), s(y)) → DIV(-(x, y), s(y))
[s1, 0] > DIV2
DIV2: [1,2]
s1: [1]
0: multiset
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))