(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
F(s(x)) → -1(s(x), g(f(x)))
F(s(x)) → G(f(x))
F(s(x)) → F(x)
G(s(x)) → -1(s(x), f(g(x)))
G(s(x)) → F(g(x))
G(s(x)) → G(x)
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
-1(s(x), s(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
-1(
x1,
x2) =
-1(
x2)
Tags:
-1 has tags [1,1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → G(f(x))
G(s(x)) → F(g(x))
F(s(x)) → F(x)
G(s(x)) → G(x)
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(s(x)) → F(x)
G(s(x)) → G(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x1) =
F(
x1)
G(
x1) =
G(
x1)
Tags:
F has tags [1]
G has tags [1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(-(x1, x2)) = x1
POL(0) = 0
POL(f(x1)) = 1 + x1
POL(g(x1)) = 1 + x1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
-(0, s(y)) → 0
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → G(f(x))
G(s(x)) → F(g(x))
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(s(x)) → G(f(x))
G(s(x)) → F(g(x))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x1) =
F(
x1)
G(
x1) =
G(
x1)
Tags:
F has tags [0]
G has tags [1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(-(x1, x2)) = x1
POL(0) = 0
POL(f(x1)) = x1
POL(g(x1)) = 1 + x1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
-(0, s(y)) → 0
(14) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(16) TRUE