(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(f(x), y) → H(x, y)
H(x, y) → G(x, f(y))

The TRS R consists of the following rules:

g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(f(x), y) → H(x, y)
H(x, y) → G(x, f(y))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1, x2)  =  G(x1)
H(x0, x1, x2)  =  H(x1)

Tags:
G has argument tags [1,0,1] and root tag 1
H has argument tags [0,6,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(x1, x2)  =  G
f(x1)  =  f(x1)
H(x1, x2)  =  H(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[f1, H2] > G

Status:
G: multiset
f1: multiset
H2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(6) TRUE