(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
<=1(s(x), s(y)) → <=1(x, y)
PERFECTP(s(x)) → F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) → F(x, u, -(z, s(x)), u)
F(s(x), 0, z, u) → -1(z, s(x))
F(s(x), s(y), z, u) → IF(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))
F(s(x), s(y), z, u) → <=1(x, y)
F(s(x), s(y), z, u) → F(s(x), -(y, x), z, u)
F(s(x), s(y), z, u) → -1(y, x)
F(s(x), s(y), z, u) → F(x, u, z, u)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

<=1(s(x), s(y)) → <=1(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


<=1(s(x), s(y)) → <=1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
<=1(x0, x1, x2)  =  <=1(x2)

Tags:
<=1 has argument tags [0,2,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(s(x), s(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
-1(x0, x1, x2)  =  -1(x2)

Tags:
-1 has argument tags [0,2,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), z, u) → F(s(x), -(y, x), z, u)
F(s(x), 0, z, u) → F(x, u, -(z, s(x)), u)
F(s(x), s(y), z, u) → F(x, u, z, u)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(x), 0, z, u) → F(x, u, -(z, s(x)), u)
F(s(x), s(y), z, u) → F(x, u, z, u)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2, x3, x4)  =  F(x0, x3, x4)

Tags:
F has argument tags [4,0,1,3,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1, x2, x3, x4)  =  x1
s(x1)  =  s(x1)
-(x1, x2)  =  x1
0  =  0

Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), z, u) → F(s(x), -(y, x), z, u)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(x), s(y), z, u) → F(s(x), -(y, x), z, u)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2, x3, x4)  =  F(x2, x4)

Tags:
F has argument tags [0,1,6,5,1] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1, x2, x3, x4)  =  F(x3, x4)
s(x1)  =  s(x1)
-(x1, x2)  =  x1
0  =  0

Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE