0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
SORT(cons(x, y)) → INSERT(x, sort(y))
SORT(cons(x, y)) → SORT(y)
INSERT(x, cons(v, w)) → CHOOSE(x, cons(v, w), x, v)
CHOOSE(x, cons(v, w), 0, s(z)) → INSERT(x, w)
CHOOSE(x, cons(v, w), s(y), s(z)) → CHOOSE(x, cons(v, w), y, z)
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
CHOOSE(x, cons(v, w), 0, s(z)) → INSERT(x, w)
INSERT(x, cons(v, w)) → CHOOSE(x, cons(v, w), x, v)
CHOOSE(x, cons(v, w), s(y), s(z)) → CHOOSE(x, cons(v, w), y, z)
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
Order:Homeomorphic Embedding Order
AFS:
0 = 0
s(x1) = s(x1)
cons(x1, x2) = cons(x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
SORT(cons(x, y)) → SORT(y)
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
Order:Homeomorphic Embedding Order
AFS:
cons(x1, x2) = cons(x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none