(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SORT(cons(x, y)) → INSERT(x, sort(y))
SORT(cons(x, y)) → SORT(y)
INSERT(x, cons(v, w)) → CHOOSE(x, cons(v, w), x, v)
CHOOSE(x, cons(v, w), 0, s(z)) → INSERT(x, w)
CHOOSE(x, cons(v, w), s(y), s(z)) → CHOOSE(x, cons(v, w), y, z)

The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CHOOSE(x, cons(v, w), 0, s(z)) → INSERT(x, w)
INSERT(x, cons(v, w)) → CHOOSE(x, cons(v, w), x, v)
CHOOSE(x, cons(v, w), s(y), s(z)) → CHOOSE(x, cons(v, w), y, z)

The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CHOOSE(x, cons(v, w), 0, s(z)) → INSERT(x, w)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CHOOSE(x0, x1, x2, x3, x4)  =  CHOOSE(x0, x3)
INSERT(x0, x1, x2)  =  INSERT(x0, x1, x2)

Tags:
CHOOSE has argument tags [0,2,7,5,4] and root tag 0
INSERT has argument tags [0,4,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(CHOOSE(x1, x2, x3, x4)) = x1 + x2   
POL(INSERT(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INSERT(x, cons(v, w)) → CHOOSE(x, cons(v, w), x, v)
CHOOSE(x, cons(v, w), s(y), s(z)) → CHOOSE(x, cons(v, w), y, z)

The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CHOOSE(x, cons(v, w), s(y), s(z)) → CHOOSE(x, cons(v, w), y, z)

The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CHOOSE(x, cons(v, w), s(y), s(z)) → CHOOSE(x, cons(v, w), y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CHOOSE(x0, x1, x2, x3, x4)  =  CHOOSE(x4)

Tags:
CHOOSE has argument tags [1,3,7,1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(CHOOSE(x1, x2, x3, x4)) = x1 + x2   
POL(cons(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SORT(cons(x, y)) → SORT(y)

The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SORT(cons(x, y)) → SORT(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SORT(x0, x1)  =  SORT(x1)

Tags:
SORT has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(SORT(x1)) = 0   
POL(cons(x1, x2)) = 1 + x2   

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE