(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
+2 > *^12

Status:
*^12: [2,1]
+2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(6) TRUE