0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))
.1(.(x, y), z) → .1(x, .(y, z))
.1(.(x, y), z) → .1(y, z)
I(.(x, y)) → .1(i(y), i(x))
I(.(x, y)) → I(y)
I(.(x, y)) → I(x)
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))
.1(.(x, y), z) → .1(y, z)
.1(.(x, y), z) → .1(x, .(y, z))
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
.1(.(x, y), z) → .1(y, z)
.1(.(x, y), z) → .1(x, .(y, z))
.2 > [.^11, 1, i]
.^11: multiset
.2: multiset
1: multiset
i: multiset
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))
I(.(x, y)) → I(x)
I(.(x, y)) → I(y)
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
I(.(x, y)) → I(x)
I(.(x, y)) → I(y)
[I1, .2]
I1: multiset
.2: multiset
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))