(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NOT(or(x, y)) → AND(not(x), not(y))
NOT(or(x, y)) → NOT(x)
NOT(or(x, y)) → NOT(y)
NOT(and(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(y)
AND(x, or(y, z)) → AND(x, y)
AND(x, or(y, z)) → AND(x, z)
AND(or(y, z), x) → AND(x, y)
AND(or(y, z), x) → AND(x, z)

The TRS R consists of the following rules:

not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(x, or(y, z)) → AND(x, z)
AND(x, or(y, z)) → AND(x, y)
AND(or(y, z), x) → AND(x, y)
AND(or(y, z), x) → AND(x, z)

The TRS R consists of the following rules:

not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
or(x1, x2)  =  or(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • AND(x, or(y, z)) → AND(x, z) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

  • AND(x, or(y, z)) → AND(x, y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

  • AND(or(y, z), x) → AND(x, y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 >= 1, 1 > 2

  • AND(or(y, z), x) → AND(x, z) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 >= 1, 1 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NOT(or(x, y)) → NOT(y)
NOT(or(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(y)

The TRS R consists of the following rules:

not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
and(x1, x2)  =  and(x1, x2)
or(x1, x2)  =  or(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • NOT(or(x, y)) → NOT(y) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • NOT(or(x, y)) → NOT(x) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • NOT(and(x, y)) → NOT(x) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • NOT(and(x, y)) → NOT(y) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(10) TRUE