(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(-(x, y)) → D1(x)
D1(-(x, y)) → D1(y)
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
D1(
x0,
x1) =
D1(
x0,
x1)
Tags:
D1 has argument tags [1,0] and root tag 0
Comparison: MS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(*(x1, x2)) = x1 + x2
POL(+(x1, x2)) = 1 + x1 + x2
POL(-(x1, x2)) = x1 + x2
POL(D1(x1)) = 1
The following usable rules [FROCOS05] were oriented:
none
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(-(x, y)) → D1(x)
D1(-(x, y)) → D1(y)
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
D1(-(x, y)) → D1(x)
D1(-(x, y)) → D1(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
D1(
x0,
x1) =
D1(
x0,
x1)
Tags:
D1 has argument tags [1,1] and root tag 0
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(*(x1, x2)) = x1 + x2
POL(-(x1, x2)) = 1 + x1 + x2
POL(D1(x1)) = 1
The following usable rules [FROCOS05] were oriented:
none
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
D1(
x0,
x1) =
D1(
x1)
Tags:
D1 has argument tags [1,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(*(x1, x2)) = 1 + x1 + x2
POL(D1(x1)) = 1
The following usable rules [FROCOS05] were oriented:
none
(8) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(10) TRUE