0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 PisEmptyProof (⇔)
↳6 TRUE
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(-(x, y)) → D1(x)
D1(-(x, y)) → D1(y)
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(-(x, y)) → D1(x)
D1(-(x, y)) → D1(y)
POL(*(x1, x2)) = 1 + x1 + x2
POL(+(x1, x2)) = 1 + x1 + x2
POL(-(x1, x2)) = 1 + x1 + x2
POL(D1(x1)) = x1
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))