(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), s(y)) → +1(x, y)
*1(s(x), s(y)) → +1(*(x, y), +(x, y))
*1(s(x), s(y)) → *1(x, y)
*1(s(x), s(y)) → +1(x, y)
SUM(cons(x, l)) → +1(x, sum(l))
SUM(cons(x, l)) → SUM(l)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), s(y)) → +1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(s(x), s(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
+1(x1, x2)  =  +1(x2)

Tags:
+1 has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, l)) → SUM(l)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, l)) → SUM(l)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SUM(x1)  =  SUM(x1)

Tags:
SUM has tags [0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(cons(x1, x2)) = 1 + x2   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(s(x), s(y)) → *1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(s(x), s(y)) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
*1(x1, x2)  =  *1(x2)

Tags:
*1 has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROD(cons(x, l)) → PROD(l)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROD(cons(x, l)) → PROD(l)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROD(x1)  =  PROD(x1)

Tags:
PROD has tags [0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(cons(x1, x2)) = 1 + x2   

The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE