(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)
APP(cons(x, l1), l2) → APP(l1, l2)
APP(app(l1, l2), l3) → APP(l1, app(l2, l3))
APP(app(l1, l2), l3) → APP(l2, l3)
MEM(x, cons(y, l)) → IFMEM(eq(x, y), x, l)
MEM(x, cons(y, l)) → EQ(x, y)
IFMEM(false, x, l) → MEM(x, l)
INTER(app(l1, l2), l3) → APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(l1, app(l2, l3)) → APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) → MEM(x, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) → MEM(x, l1)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(l1, l2), l3) → APP(l1, app(l2, l3))
APP(cons(x, l1), l2) → APP(l1, l2)
APP(app(l1, l2), l3) → APP(l2, l3)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(l1, l2), l3) → APP(l1, app(l2, l3))
APP(app(l1, l2), l3) → APP(l2, l3)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x0, x1)

Tags:
APP has argument tags [1,2,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
APP1 > app2
nil > app2

Status:
APP1: [1]
app2: [1,2]
nil: []


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l1), l2) → APP(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l1), l2) → APP(l1, l2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x1)

Tags:
APP has argument tags [0,3,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(x1, x2)  =  APP
cons(x1, x2)  =  cons(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[APP, cons2]

Status:
APP: []
cons2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
EQ(x0, x1, x2)  =  EQ(x0, x2)

Tags:
EQ has argument tags [1,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[EQ, s1]

Status:
EQ: []
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(x, cons(y, l)) → IFMEM(eq(x, y), x, l)
IFMEM(false, x, l) → MEM(x, l)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MEM(x, cons(y, l)) → IFMEM(eq(x, y), x, l)
IFMEM(false, x, l) → MEM(x, l)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MEM(x0, x1, x2)  =  MEM(x1, x2)
IFMEM(x0, x1, x2, x3)  =  IFMEM(x2, x3)

Tags:
MEM has argument tags [1,0,0] and root tag 0
IFMEM has argument tags [0,7,0,0] and root tag 1

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MEM(x1, x2)  =  x1
cons(x1, x2)  =  cons(x2)
IFMEM(x1, x2, x3)  =  IFMEM(x1, x3)
eq(x1, x2)  =  eq(x1, x2)
false  =  false
0  =  0
true  =  true
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > [eq2, true]
s1 > false

Status:
cons1: [1]
IFMEM2: [2,1]
eq2: [2,1]
false: []
0: []
true: []
s1: [1]


The following usable rules [FROCOS05] were oriented:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INTER(x0, x1, x2)  =  INTER(x0, x1)
IFINTER(x0, x1, x2, x3, x4)  =  IFINTER(x0, x1, x2, x4)

Tags:
INTER has argument tags [0,1,4] and root tag 0
IFINTER has argument tags [2,0,3,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INTER(x1, x2)  =  x2
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
IFINTER(x1, x2, x3, x4)  =  x3
mem(x1, x2)  =  x2
true  =  true
false  =  false
nil  =  nil
ifmem(x1, x2, x3)  =  ifmem(x1, x3)
eq(x1, x2)  =  eq
0  =  0
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
cons2 > ifmem2 > true
cons2 > eq > true
cons2 > eq > [false, nil]
0 > true
0 > [false, nil]

Status:
app2: [2,1]
cons2: [2,1]
true: []
false: []
nil: []
ifmem2: [2,1]
eq: []
0: []
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INTER(x0, x1, x2)  =  INTER(x1)
IFINTER(x0, x1, x2, x3, x4)  =  IFINTER(x0, x1, x3)

Tags:
INTER has argument tags [0,4,6] and root tag 0
IFINTER has argument tags [4,4,4,4,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INTER(x1, x2)  =  x2
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2
IFINTER(x1, x2, x3, x4)  =  x3
mem(x1, x2)  =  mem
true  =  true
false  =  false
nil  =  nil
ifmem(x1, x2, x3)  =  x1
eq(x1, x2)  =  eq
0  =  0
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
app2 > [mem, true, false, eq]
nil > [mem, true, false, eq]
0 > [mem, true, false, eq]

Status:
app2: [1,2]
mem: []
true: []
false: []
nil: []
eq: []
0: []


The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INTER(x0, x1, x2)  =  INTER(x0, x2)
IFINTER(x0, x1, x2, x3, x4)  =  IFINTER(x0)

Tags:
INTER has argument tags [4,5,4] and root tag 1
IFINTER has argument tags [4,0,0,4,2] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INTER(x1, x2)  =  INTER
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x1
IFINTER(x1, x2, x3, x4)  =  x4
mem(x1, x2)  =  mem(x1)
true  =  true
false  =  false
nil  =  nil
ifmem(x1, x2, x3)  =  ifmem(x2)
eq(x1, x2)  =  eq
0  =  0
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
nil > false > [INTER, app2, true]
ifmem1 > mem1 > false > [INTER, app2, true]
eq > false > [INTER, app2, true]
0 > false > [INTER, app2, true]
s > [INTER, app2, true]

Status:
INTER: []
app2: [2,1]
mem1: [1]
true: []
false: []
nil: []
ifmem1: [1]
eq: []
0: []
s: []


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INTER(x0, x1, x2)  =  INTER(x0, x1)
IFINTER(x0, x1, x2, x3, x4)  =  IFINTER(x2, x3, x4)

Tags:
INTER has argument tags [0,0,7] and root tag 1
IFINTER has argument tags [0,7,4,2,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INTER(x1, x2)  =  x2
cons(x1, x2)  =  cons(x1, x2)
IFINTER(x1, x2, x3, x4)  =  IFINTER(x1, x2, x3, x4)
mem(x1, x2)  =  mem
true  =  true
false  =  false
nil  =  nil
ifmem(x1, x2, x3)  =  x1
eq(x1, x2)  =  eq
0  =  0
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
cons2 > IFINTER4
0 > [mem, false, eq] > true
s > [mem, false, eq] > true

Status:
cons2: [1,2]
IFINTER4: [4,3,1,2]
mem: []
true: []
false: []
nil: []
eq: []
0: []
s: []


The following usable rules [FROCOS05] were oriented:

mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(false, x, l) → mem(x, l)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
ifmem(true, x, l) → true

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE