(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, l1)
ifappend(l1, l2, nil) → l2
ifappend(l1, l2, cons(x, l)) → cons(x, append(l, l2))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND(l1, l2) → IFAPPEND(l1, l2, l1)
IFAPPEND(l1, l2, cons(x, l)) → APPEND(l, l2)

The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, l1)
ifappend(l1, l2, nil) → l2
ifappend(l1, l2, cons(x, l)) → cons(x, append(l, l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IFAPPEND(l1, l2, cons(x, l)) → APPEND(l, l2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APPEND(x0, x1, x2)  =  APPEND(x0)
IFAPPEND(x0, x1, x2, x3)  =  IFAPPEND(x1, x3)

Tags:
APPEND has argument tags [5,0,2] and root tag 1
IFAPPEND has argument tags [6,5,5,5] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APPEND(x1, x2)  =  x1
IFAPPEND(x1, x2, x3)  =  IFAPPEND(x1)
cons(x1, x2)  =  cons(x2)

Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND(l1, l2) → IFAPPEND(l1, l2, l1)

The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, l1)
ifappend(l1, l2, nil) → l2
ifappend(l1, l2, cons(x, l)) → cons(x, append(l, l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(6) TRUE