0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 DependencyGraphProof (⇔)
↳8 QDP
↳9 QDPOrderProof (⇔)
↳10 QDP
↳11 PisEmptyProof (⇔)
↳12 TRUE
ack_in(0, n) → ack_out(s(n))
ack_in(s(m), 0) → u11(ack_in(m, s(0)))
u11(ack_out(n)) → ack_out(n)
ack_in(s(m), s(n)) → u21(ack_in(s(m), n), m)
u21(ack_out(n), m) → u22(ack_in(m, n))
u22(ack_out(n)) → ack_out(n)
ACK_IN(s(m), 0) → U11(ack_in(m, s(0)))
ACK_IN(s(m), 0) → ACK_IN(m, s(0))
ACK_IN(s(m), s(n)) → U21(ack_in(s(m), n), m)
ACK_IN(s(m), s(n)) → ACK_IN(s(m), n)
U21(ack_out(n), m) → U22(ack_in(m, n))
U21(ack_out(n), m) → ACK_IN(m, n)
ack_in(0, n) → ack_out(s(n))
ack_in(s(m), 0) → u11(ack_in(m, s(0)))
u11(ack_out(n)) → ack_out(n)
ack_in(s(m), s(n)) → u21(ack_in(s(m), n), m)
u21(ack_out(n), m) → u22(ack_in(m, n))
u22(ack_out(n)) → ack_out(n)
ACK_IN(s(m), s(n)) → U21(ack_in(s(m), n), m)
U21(ack_out(n), m) → ACK_IN(m, n)
ACK_IN(s(m), 0) → ACK_IN(m, s(0))
ACK_IN(s(m), s(n)) → ACK_IN(s(m), n)
ack_in(0, n) → ack_out(s(n))
ack_in(s(m), 0) → u11(ack_in(m, s(0)))
u11(ack_out(n)) → ack_out(n)
ack_in(s(m), s(n)) → u21(ack_in(s(m), n), m)
u21(ack_out(n), m) → u22(ack_in(m, n))
u22(ack_out(n)) → ack_out(n)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACK_IN(s(m), s(n)) → U21(ack_in(s(m), n), m)
ACK_IN(s(m), 0) → ACK_IN(m, s(0))
POL(0) = 1
POL(ack_in(x1, x2)) = 1 + x1 + x2
POL(ack_out(x1)) = 1
POL(s(x1)) = 1 + x1
POL(u11(x1)) = 1 + x1
POL(u21(x1, x2)) = 0
POL(u22(x1)) = 1
U21(ack_out(n), m) → ACK_IN(m, n)
ACK_IN(s(m), s(n)) → ACK_IN(s(m), n)
ack_in(0, n) → ack_out(s(n))
ack_in(s(m), 0) → u11(ack_in(m, s(0)))
u11(ack_out(n)) → ack_out(n)
ack_in(s(m), s(n)) → u21(ack_in(s(m), n), m)
u21(ack_out(n), m) → u22(ack_in(m, n))
u22(ack_out(n)) → ack_out(n)
ACK_IN(s(m), s(n)) → ACK_IN(s(m), n)
ack_in(0, n) → ack_out(s(n))
ack_in(s(m), 0) → u11(ack_in(m, s(0)))
u11(ack_out(n)) → ack_out(n)
ack_in(s(m), s(n)) → u21(ack_in(s(m), n), m)
u21(ack_out(n), m) → u22(ack_in(m, n))
u22(ack_out(n)) → ack_out(n)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACK_IN(s(m), s(n)) → ACK_IN(s(m), n)
POL(s(x1)) = 1 + x1
ack_in(0, n) → ack_out(s(n))
ack_in(s(m), 0) → u11(ack_in(m, s(0)))
u11(ack_out(n)) → ack_out(n)
ack_in(s(m), s(n)) → u21(ack_in(s(m), n), m)
u21(ack_out(n), m) → u22(ack_in(m, n))
u22(ack_out(n)) → ack_out(n)