(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), z))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, x)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, app(app(:, x), y)), z))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), y))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 14 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x1, x2)  =  APP(x1)

Tags:
APP has tags [0,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
: > [app2, C]

Status:
app2: [1,2]
:: []
C: []


The following usable rules [FROCOS05] were oriented:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x1, x2)  =  APP(x2)

Tags:
APP has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
[app2, cons, filter2, false]

Status:
app2: [1,2]
map: []
cons: []
filter: []
filter2: []
true: []
false: []


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE