(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(., app(app(., x), y)), z) → APP(app(., x), app(app(., y), z))
APP(app(., app(app(., x), y)), z) → APP(app(., y), z)
APP(app(., app(app(., x), y)), z) → APP(., y)
APP(i, app(app(., x), y)) → APP(app(., app(i, y)), app(i, x))
APP(i, app(app(., x), y)) → APP(., app(i, y))
APP(i, app(app(., x), y)) → APP(i, y)
APP(i, app(app(., x), y)) → APP(i, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)

The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 12 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(., app(app(., x), y)), z) → APP(app(., y), z)
APP(app(., app(app(., x), y)), z) → APP(app(., x), app(app(., y), z))

The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(., app(app(., x), y)), z) → APP(app(., y), z)
APP(app(., app(app(., x), y)), z) → APP(app(., x), app(app(., y), z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x0, x1)

Tags:
APP has argument tags [0,2,0] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
[app2, .] > APP2
[app2, .] > 1
i > 1

Status:
APP2: [1,2]
app2: [1,2]
.: []
1: []
i: []


The following usable rules [FROCOS05] were oriented:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(i, app(app(., x), y)) → APP(i, x)
APP(i, app(app(., x), y)) → APP(i, y)

The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(i, app(app(., x), y)) → APP(i, x)
APP(i, app(app(., x), y)) → APP(i, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x0, x2)

Tags:
APP has argument tags [0,3,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(x1, x2)  =  x1
i  =  i
app(x1, x2)  =  app(x1, x2)
.  =  .

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
i: []
app2: [1,2]
.: []


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x0)

Tags:
APP has argument tags [1,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x2)
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons
filter  =  filter
filter2  =  filter2
true  =  true
false  =  false
.  =  .
1  =  1
i  =  i
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
cons > map > APP1 > [app2, filter2, false, .] > nil
filter > APP1 > [app2, filter2, false, .] > nil
true > nil
1 > nil
i > [app2, filter2, false, .] > nil

Status:
APP1: [1]
app2: [1,2]
map: []
cons: []
filter: []
filter2: []
true: []
false: []
.: []
1: []
i: []
nil: []


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(., 1), x) → x
app(app(., x), 1) → x
app(app(., app(i, x)), x) → 1
app(app(., x), app(i, x)) → 1
app(app(., app(i, y)), app(app(., y), z)) → z
app(app(., y), app(app(., app(i, y)), z)) → z
app(app(., app(app(., x), y)), z) → app(app(., x), app(app(., y), z))
app(i, 1) → 1
app(i, app(i, x)) → x
app(i, app(app(., x), y)) → app(app(., app(i, y)), app(i, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(19) TRUE