(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(f, a) → app(f, b)
app(g, b) → app(g, a)
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(f, a) → APP(f, b)
APP(g, b) → APP(g, a)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(cons, app(fun, x)), app(app(map, fun), xs))
APP(app(map, fun), app(app(cons, x), xs)) → APP(cons, app(fun, x))
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(filter2, app(fun, x)), fun), x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(filter2, app(fun, x)), fun)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(filter2, app(fun, x))
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(cons, x), app(app(filter, fun), xs))
APP(app(app(app(filter2, true), fun), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(filter, fun)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(filter, fun)

The TRS R consists of the following rules:

app(f, a) → app(f, b)
app(g, b) → app(g, a)
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 12 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)

The TRS R consists of the following rules:

app(f, a) → app(f, b)
app(g, b) → app(g, a)
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(APP(x1, x2)) = x1   
POL(app(x1, x2)) = 1 + x1 + x2   
POL(cons) = 0   
POL(false) = 1   
POL(filter) = 1   
POL(filter2) = 1   
POL(map) = 1   
POL(true) = 1   

The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)

The TRS R consists of the following rules:

app(f, a) → app(f, b)
app(g, b) → app(g, a)
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(APP(x1, x2)) = x2   
POL(app(x1, x2)) = 1 + x1 + x2   
POL(cons) = 0   
POL(map) = 0   

The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(f, a) → app(f, b)
app(g, b) → app(g, a)
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE