(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(times, x), app(s, y)) → APP(app(plus, app(app(times, x), y)), x)
APP(app(times, x), app(s, y)) → APP(plus, app(app(times, x), y))
APP(app(times, x), app(s, y)) → APP(app(times, x), y)
APP(app(plus, x), app(s, y)) → APP(s, app(app(plus, x), y))
APP(app(plus, x), app(s, y)) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 14 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, x), app(s, y)) → APP(app(plus, x), y)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
plus  =  plus
s  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
APP1 > plus > [app2, s]

Status:
APP1: [1]
app2: [2,1]
plus: []
s: []


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, x), app(s, y)) → APP(app(plus, x), y)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(plus, x), app(s, y)) → APP(app(plus, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
plus > [APP2, app2, s]

Status:
APP2: [2,1]
app2: [1,2]
plus: []
s: []


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(times, x), app(s, y)) → APP(app(times, x), y)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(times, x), app(s, y)) → APP(app(times, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
times > [APP2, app2, s]

Status:
APP2: [2,1]
app2: [1,2]
times: []
s: []


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x2
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons
filter  =  filter
filter2  =  filter2
true  =  true
false  =  false
times  =  times
0  =  0
s  =  s
plus  =  plus
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
map > cons > [app2, filter2, false, s, plus]
map > nil > [app2, filter2, false, s, plus]
filter > nil > [app2, filter2, false, s, plus]
true > [app2, filter2, false, s, plus]
times > [app2, filter2, false, s, plus]
0 > [app2, filter2, false, s, plus]

Status:
app2: [2,1]
map: []
cons: []
filter: []
filter2: []
true: []
false: []
times: []
0: []
s: []
plus: []
nil: []


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(21) TRUE