(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(treemap, f), app(app(node, x), xs)) → app(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(treemap, f), app(app(node, x), xs)) → APP(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))
APP(app(treemap, f), app(app(node, x), xs)) → APP(node, app(f, x))
APP(app(treemap, f), app(app(node, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(app(map, app(treemap, f)), xs)
APP(app(treemap, f), app(app(node, x), xs)) → APP(map, app(treemap, f))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(treemap, f), app(app(node, x), xs)) → app(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(app(map, app(treemap, f)), xs)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(treemap, f), app(app(node, x), xs)) → app(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
map  =  map
cons  =  cons
treemap  =  treemap
node  =  node
app(x1, x2)  =  app(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • APP(app(map, f), app(app(cons, x), xs)) → APP(f, x) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

  • APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

  • APP(app(treemap, f), app(app(node, x), xs)) → APP(f, x) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

  • APP(app(treemap, f), app(app(node, x), xs)) → APP(app(map, app(treemap, f)), xs) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(6) TRUE