(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(treemap, f), app(app(node, x), xs)) → app(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(treemap, f), app(app(node, x), xs)) → APP(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))
APP(app(treemap, f), app(app(node, x), xs)) → APP(node, app(f, x))
APP(app(treemap, f), app(app(node, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(app(map, app(treemap, f)), xs)
APP(app(treemap, f), app(app(node, x), xs)) → APP(map, app(treemap, f))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(treemap, f), app(app(node, x), xs)) → app(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(app(map, app(treemap, f)), xs)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(treemap, f), app(app(node, x), xs)) → app(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(f, x)
APP(app(treemap, f), app(app(node, x), xs)) → APP(app(map, app(treemap, f)), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
node > map > [APP2, app2] > treemap

Status:
APP2: [2,1]
app2: [1,2]
map: multiset
cons: multiset
treemap: multiset
node: multiset


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(treemap, f), app(app(node, x), xs)) → app(app(node, app(f, x)), app(app(map, app(treemap, f)), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE